Inverse Distance Weighting interpolation with splitted N/E/S/W slopes and flats.
This is designed around the data produced by the Snowpack model: each station produces virtual slopes (38°) for each of the main 4 aspects. This algorithm interpolates each N/E/S/W group of stations separately (IDW with elevation lapse rate) and then recombines them with weights that depend on the cell's slope and aspect. It takes the following arguments:
- SCALE: this is a scaling parameter to smooth the IDW distribution. In effect, this is added to the distance in order to move into the tail of the 1/d distribution (default: 1000m);
- ALPHA: this is an exponent to the 1/d distribution (default: 1);
|
| IDWSlopesAlgorithm (const std::vector< std::pair< std::string, std::string > > &vecArgs, const std::string &i_algo, const std::string &i_param, TimeSeriesManager &i_tsm) |
|
virtual double | getQualityRating (const Date &i_date) |
|
virtual void | calculate (const DEMObject &dem, Grid2DObject &grid) |
|
| InterpolationAlgorithm (const std::vector< std::pair< std::string, std::string > > &, const std::string &i_algo, const std::string &i_param, TimeSeriesManager &i_tsm) |
|
virtual | ~InterpolationAlgorithm () |
|
virtual double | getQualityRating (const Date &i_date)=0 |
|
virtual void | calculate (const DEMObject &dem, Grid2DObject &grid)=0 |
|
std::string | getInfo () const |
| Return an information string about the interpolation process. More...
|
|